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We propose for quantum-mechanical calculations on diatomic molecules the use of mixed orbital sets com
posed of both Slater-type orbitals and elliptic orbitals. The Slater-type orbitals provide a good representation 
of the essentially spherical charge distributions near atoms in molecules and the elliptic orbitals provide good 
electronic distributions for the delocalized valence electrons. We have carried out calculations with up to 28 
terms of the mixed orbital set on the lithium hydride molecule and obtained the most accurate wave function 
yet published. Our values for the several molecular parameters are as follows: (the experimental values are 
given in parenthesis) 

- £ = 8 . 0 5 6 1 a.u.(8.0703) ;Re=3.046 a.u.(3.013); 
coe = 1438 cm"1 (1406); wexe=86 cm"1 (23); 

Juo=5.93(5.88);/xi=6.00(5.99);M2=6.05(6.10);[/t«/(^e5M/ai?U,)]=1.74(1.8±0.3). 

As is usually the case, our results are superior to self-consistent field calculations. We have calculated the 
electric field gradients at both nuclei. The quadrupole coupling for D in LiD was obtained using q& and 
yielding ^ D Q D A = 34.2 kc/sec (33±1 kc/sec). When qu is combined with the experimental quadrupole 
coupling constant we estimate Qhi— —4.3X10-26 cm2. This is considerably larger than the shell-model esti
mate and supports the proposal that for odd-proton nuclei nucleons external to a shell deform it. 

INTRODUCTION 

THERE are in use at present two general methods1 

for obtaining accurate wave functions for small 
diatomic molecules. The SCF-MO-CI method employs 
the self-consistent field orbitals to construct the con
figurations for many configuration wavefunction. The 
VB-CI method employs valence bond structures 
(configurations) as configurations in a many-configura
tion wave function. The relative merits of the two 
formulations have been discussed recently by the 
authors.2 The second method is used in this paper. 

Most previous calculations done heretofore by either 
method have been carried out using Slater-type 
orbitals.1 Slater-type orbitals provide a good representa
tion for the essentially spherical charge distributions 
near atoms in molecules but are not particularly suited 
for describing valence electrons. Another basis which 
has been less used3-8 is the elliptic orbital basis [see 
Eq. (2)]. These functions are particularly well suited 
for describing the axially symmetric charge distributions 
associated with "bonding" or "valence" electrons 
while representation of the spherical atomic distribu
tions in this basis is rather cumbersome. It occurred to 

* Work supported by the Robert A. Welch Foundation, 
Houston, Texas, and the National Aeronautical and Space 
Administration. 

1 For a recent summary, see J. C. Slater, Quantum Theory of 
Molecules and Solids (McGraw-Hill Book Company, Inc., New 
York, 1963), Vol. I. 

2 J. C. Browne and F. A. Matsen, J. Phys. Chem. 66, 2332 
(1962). 

3 H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933). 
4 Many authors since James and Coolidge have used elliptic 

orbitals for H2 calculations. 
5 J. K. Knipp, J. Chem. Phys. 4, 300 (1936). 
6 F. T. Ormand and F. A. Matsen, J. Chem. Phys. 29, 100 

(1958). 
7 F. E. Harris, J. Chem. Phys. 32, 3 (1960). 
8 H. M. James, J. Chem. Phys. 2, 794 (1934). 
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us that a wave function basis chosen appropriately from 
both Slater-type and elliptic orbitals would provide a 
more rapidly converging and conceptually satisfying 
description of a molecule than either taken separately.9 

In this paper we present calculations on the lithium 
hydride molecule using wave functions of up to twenty-
eight generalized valence bond configurations con
structed from a mixed orbital set. On comparison of our 
computed molecular parameters with the observed 
ones (see Table I) we conclude that our wave function 
is considerably better than any heretofore published. 

THE WAVE FUNCTION 

The specification of an electronic wave function 
requires the specification of orbitals, orbital exponents, 
and electronic configurations. In our mixed basis set 
the Slater-type orbitals are defined by 

= nam, (1) 

where a=s, p, d, • • • for 1=0, 1, 2, • • •. 
The elliptic10 orbitals are of the form 

^(^W)=(- l)(N|-«)/2Xy[(X2-l)( l-M2)] |m|/2 

X£-"yx-0Met™*# (2) 

9 J. C. Browne and F. A. Matsen,Bull. Am. Phys. Soc. 8, 123 
(1963). Since the publication of this abstract we have learned 
that F. E. Harris and H. H. Michaels have planned similar 
calculations. References 5, 6, and 8 used Is functions for core 
orbitals and a restricted class of elliptic orbitals for the valence 
electrons. None of them used configuration interaction for the 
core. It should be noted that the Is orbital is a special case of the 
simplest elliptic orbital [see Eq. (2)]. These calculations can, in a 
strict sense, be considered as using a purely elliptic basis. 

10 See J. M. Miller, J. M. Gerhauser, and F. A. Matsen, Quantum 
Chemistry Integrals and Tables (University of Texas Press, Austin, 
1959), p. 11, for definition of the elliptic coordinates. See also 
M. Kotani, A. Amemiya, E. Ishiguiro, and T. Kimura, Tables of 
Molecular Integrals (Maruzen Company, Ltd., Tokyo, 1955). 
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TABLE I. Summary of significant LiH calculations. 

This Experi-
calc. menta-b'c Ishigurod Hurst6 Karof Harris* Ebbingh Kahalas* Browne* 

(a.u.) 8.0561 8.0703 7.9761 8.0397 8.04127 8.0171 8.04379 

D/*B 

D* 
Re 
0>e 

OJeXe 

-/xo(Ro=3.069) 
-/*l(*l = 3.11) 
~/*2(i2a = 3.16) 
fJie/LReidfJi/dRlR, ,)] 

(eV) 
(eV) 
(a0) 
(cm"1) 
(cm"1) 
(D) 
(D) 
(D) 

i? = 3.046k 

2.121 

2.34m 

3.046 
1438 

86 
5.93 
6.00 
6.05 
1.74 

2.516 
2.516 
3.015 

1406 
23 
5.88 

1.8±3 

£=3.013 

1.97 
«3.3 

1130 

6.04 

1.67 
3.25 

1212 

6.05 

4.5 

R = 3.2 
1.404 
2.21 

[fe/&)Li] 
l(q/2e)n3 

(«o~3) -0.0173 
(aQ~3) -0.0258 0.249 

£ = 3 . 0 
1.725 

5.96 

1.53 

£ = 3.02 £=3.075 
1.067 

5.89 

-0.0166 
0.0274 

1.793 
2.04 
3.075 

1602 
28 
5.57 

a G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1950), 2nd ed., Table 39. 
b R. Velasco, Can. J. Phys. 35, 1024 (1957). 
° See Ref. 14. 
d E. Ishiguro, Proceedings of Symposium on Molecular Physics (Maruzen Company, Ltd., Tokyo, 1954), p. 10. 
• R. P. Hurst, J. Miller, and F. A. Matsen, J. Chem. Phys. 26, 1092 (1957). 
' A. M. Karo and A. R. Olson, J. Chem. Phys. 30, 1232 (1959). 
s F. E. Harris and H. Taylor (unpublished). 
fcSee Ref. 12. 
i See Ref. 19. 
i J. C. Browne and F. A. Matsen, J. Phys. Chem. 66, 2332 (1962). 
k R value in flo at which — E was evaluated. 
i De

LB =.E(exp atoms) —E(calc, molecule), gives an absolute lower bound for De. 
™ DV

R =E(calc, atoms) —JS(calc, molecule). 

Our largest wave function can be written 

* = E c&j, (3) 
i - i 

where 

or 

Vj=Vj(XaKb:XJ<-b) 

^ jtyaKb'4><rf>d) 

and each ^ has XS symmetry with orbital pairs sep
arated by a colon. The twenty-eight coefficients together 
with the Cj for R=3.Q a.u. are listed in Table II . In 
each term the Li core electrons are represented by 
Slater-type orbitals and the valence electrons by 
elliptic orbitals. The terms numbered 16 and 23 in 
Table I I couple core and valence electrons. The terms 
numbered 9, 1.1, and 28 allow for core polarization. The 
orbital exponents for the Slater-type orbitals making 
up the core configurations were taken from an eight-
term calculation on the Li atom11 which yielded an 
energy of -7 .470 a.u. (Em= -7 .479 a.u.). The orbital 
exponents for the elliptic orbitals were determined 
from a twelve-term (see Table III) calculation on the 
LiH molecule which employed only a Is2 configuration 
for the Li core electrons. Each orbital exponent for the 
elliptic orbitals was separately optimized and then 
rescaled together at each of the seven internuclear 
distances considered. The core orbitals were rescaled in 

11A single Slater-type Is orbital was used for the outer electron. 

the molecular wave function at R=3.0ao. The final 
orbital exponents for ic=3.0a0 are listed in Table IV. 
The initial separation of the wave function into two 
parts greatly reduced the computer time necessary to 
select good exponents. The orbital exponents thus 
selected should be reasonably close to optimal. In fact, 
at R=3.(k0 the virial theorem is satisfied to within less 
than 0.5%. For the computation of q^i we found it 
expedient to use a twenty-four term wave function in 
which the IS Li core orbitals are allowed to become 
elliptical orbitals. See Table V for this wave function. 

Some caution must be observed in the selection of 
exponents in the elliptic orbitals with respect to possible 
occurrence of linear dependency and the positioning of 
nodes along the internuclear axis. Linear dependence 
among the prolate spheroidal (elliptic) basis, proved, 
in fact, to be somewhat of a problem during the calcula
tions.12 Several terms which were considered had to be 
rejected because of linear dependence. The spread of 
the eigenvalues of the nonorthogonality matrix for the 
final twenty-eight term wave function was or order 105. 
The Control Data 1604 upon which these calculations 
were carried out carries roughly eleven decimal digits in 
floating point arithmetic and the energies proved to 
be quite stable under minor perturbations such as 
rearrangement of wave function terms and variation 
of the quadrature formulas for the two-electron 
two-center integrals. 

12 See D. D. Ebbing, J. Chem. Phys. 36, 1361 (1963); and P. O. 
Lowdin, Advan. Phys. 5, 46 (1956) for discussion of the linear 
dependence problem. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

TABLE II . Wave function, ^ = 2J c/$v. 
i 

TABLE IV. Orbital exponents at R=3.0ao for twenty-eight 
term wave function. 

*; 

tlsls: 0(0,0,0)0(1,0,0)] 
llsls: 0(0,0,0)0(0,2,0)] 
llsls: 0(0,0,-1)0(0,0,1)] 
llsls: 0(1,1,0)0(1,1,0)] 
O ' U ' : 0(0,0,0)0(1,0,0)] 
[ls'2s: 0(0,0,0)0(1,0,0)] 
[2s2s: 0(0,0,0)0(1,0,0)] 
[_2pap-i\ 0(0,0,0)0(1,0,0)] 
[ip&p,: 0(0,0,0)0(1,0,0)] 
[3^3A_i 10(0,0,0)0(1,0,0)] 
[3^03^o: 0(0,0,0)0(0,0,0)] 
[(&0»: 0(0,0,0)0(0,0,0)] 
[ts'ls': 0(0,0,0)0(0,2,0)] 
[ls'2s: 0(0,0,0)0(0,2,0)] 
[2*2*: 0(0,0,0)0(0,2,0)] 
[1/0(1,0,0): 2^0(1,0,0)] 

[1*1*: 
[1*1$: 
[1*1*: 
[1*1*: 
I2pi3p_: 
l2p»3pQ: 

0'(O,O,O)0(O,O,O)] 
0(0,1,0)0(0,0,0)] 
0(0,0,0)0(2,0,0)] 
0(2,0,0)0(2,0,0)] 
0(0,0,0)0(1,0,0)] 
0(0,0,0)0(1,0,0)] 

[ W ( 0 , 0 , 0 ) : 2*0(1,0,0)] 
[1*1*: 
[1*1*: 
[1*1*: 
[1*1*: 
[ls'lpj 

0(1,1,0)0^(0,0,0)] 
0(1,0,0)0'(0,0,0)] 
0(0,2,0)0'(0,0,0)] 
0(0,1,0)0^(0,0,0)] 
0(0,0,0)0(1,0,0)] 

c3iR = 3.0a0) 

+0.13273 
-0.08363 
+0.16351 
-0.01487 
+0.01489 
+0.02546 
+0.00592 
+0.00346 
-0.00346 
+0.00488 
-0.00483 
-0.00060 
-0.01149 
-0.01509 
-0.00947 
+0.00045 
+0.63647 
-0.01078 
-0.10785 
+0.02191 
-0.00227 
+0.00226 
-3.90687 
+0.12787 
-0.05389 
+0.12667 
+0.01019 
-0.00104 

Orbital Exponent 

1* 
1*' 
2s 
2p 
2p> 
3p 
3d 

4>(0,0,0) 
0'(0,0,0) 
0(1,0,0) 
0(0,1,0) 
0(0,0, ±1) 
0(1,1,0) 
0(2,0,0) 
0(0,2,0) 

1.75 
2.75 
1.28 
0.88 
1.9 
1.38 
2.45 
1.43 

2.66 
4.13 
2.62 
5.17 
2.62 
5.17 
5.66 

- 1 . 5 
-0 .92 
-0 .50 
-0.643 
-1 .15 
-1 .31 
-1 .36 

1.47 

£ ( # = 3.000) = -8.05603 a.u. 

in column two for comparison. The error in the total 
energy of this calculation is less than one half the error 
in the best previous calculated energy. We note that the 
use of the mixed *'natural" basis set allowed this 
improvement with little increase in the size of the basis. 
The Re and Ee values for this calculation were obtained 
by a cubic fit of the computed points at R= 2.6a0, 3.0ao, 
3.1#0, and 3.4ao. The calculated spectroscopic constants 
were obtained by fitting a fourth-order polynomial to five 

TABLE V. The 24-term wave function with Is2 replaced by 
24 

0"2(O,O,O)*=2cy* /. 

RESULTS 

Energy, Spectroscopic Constants, 
and Dipole Moment 

In Table I are gathered together the principle results 
obtained in this calculation and from the significant 
earlier calculations. The experimental results are given 

TABLE III . The twelve-term wave function ^ = S cj%: 

*v 

cj(R = 3.0a0) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

llsls: 0(0,0,0)0(1,0,0)] 
[1*1*: 0(0,0,0)0(0,2,0)] 
[1*1*: 0(0,0,0)0(0,0,1)] 
[1*1*: 0(1,1,0)0(1,1,0)] 
llsls: 0(0,0,0)0'(0,0,0)] 
llsls:*' (0,0,0)0' (0,0,0)] 
llsls: 0(0,0,0)0(2,0,0)] 
llsls:*' (0,0,0)0(2,0,0)] 
llsls: 0'(0,0,0)0(1,0,0)] 
llsls: 0'(0,0,0)0(0,2,0)] 
llsls: 0(0,0,0)0(0,1,0)] 
[1*1$: 0'(0,0,0)0(0,1,0)] 

0.192354 
-0.127887 

0.171317 
-0.015470 

0.643884 
-3.954195 
-0.091389 

0.103586 
-0.057502 

0.134285 
-0.016202 

0.015349 

1 . [0 " (0,0,0)0" (0,0,0): 
2 [0" (0,0,0)0" (0,0,0): 
3 [0" (0,0,0)0" (0,0,0): 
4 [0"(O,O,O)0"(O,O,O): 
5 [l*'l*': 
6 [1*'2*: 
7 I2s2s: 
8 [2^0): 
9 [3?<}So): 
10 [3d?P5o): 
11 [l*'l*': 
12 [1*'2*: 
13 I2s2s: 
14 [0" (0,0,0)0" (0,0,0): 
15 [0" (0,0,0)0" (0,0,0): 
16 [0" (0,0,0)0" (0,0,0): 
17 [0" (0,0,0)0" (0,0,0): 
18 I2p+3p-: 
19 I2p03p0: 
20 [0"^O,O,O)0" (0,0,0): 
21 [0" (0,0,0)0" (0,0,0): 
22 [0" (0,0,0)0" (0,0,0): 
23 [0" (0,0,0)0" (0,0,0): 
24 [1*'0'(0,0,0): 

0(0,0,0)0(1,0,0)] 
0(0,0,0)0(0,2,0)] 
0(0,0,1)0(0,0,-1)] 
0(1,1,0)0(1,1,0)] 
0(0,0,0)0(1,0,0)] 
0(0,0,0)0(1,0,0)] 
0(0,0,0)0(1,0,0)] 
0(0,0,0)0(1,0,0)] 
0(0,0,0)0(1,0,0)] 
0(0,0,0)0(1,0,0)] 
0(0,0,0)0(0,2,0)] 
0(0,0,0)0(0,2,0)] 
0(0,0,0)0(0,2,0)] 
0(0,0,0)^(0,0,0)] 
0(0,0,0)0(0,1,0)] 
0(0,0,0)0(2,0,0)] 
0(2,0,0)0(2,0,0)] 
0(0,0,0)0(1,0,0)] 
0(0,0,0)0(1,0,0)] 
0'(O,O,O)0(1,1,O)] 
0'(O,O,O)0(1,O,O)] 
0'(O,O,O)0(O,2,O)] 
0'(O,O,O)0(O,1,O)] 
2*0(0,0,0)] 
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computed points. a>e is given quite accurately but the 
higher members of the vibration series are given very 
poorly. The dipole moment in the lowest vibrational 
state and the dipole moment derivative at our equili
brium separation of Re=3.04:6ao were obtained from a 
quadratic fit of the calculated dipole moment values at 
R= 2.9ao, 3.0#o, and 3.1a<j. These values are in excellent 
agreement with the experimental values as can be seen 
from Table I. 

We calculated the dipole moments for the higher 
vibrational states by evaluating the quadratic in the 
dipole moment mentioned previously at Rv, where 

Rv^l{Re)KBe/{Be-ae{v+\/2))J^--Re+Re{c^.). 

Here experimental values were used for the spectro
scopic constants except for Re(calc). This adjustment 
was necessary since J?e(calc)^i^e(exp). 

THE QUADRUPOLE MOMENT OF Li7 AND THE 
QUADRUPOLE COUPLING CONSTANT OF LiD 

The most significant observable quantity resulting 
from the derivation of a nucleus in an atom or molecule 
from spherical symmetry is the quadrupole coupling 
constant,13 eqQ/h. Now Q is the quadrupole moment of 
the nucleus and q is the electric field gradient due to the 
electronic environment of the nucleus. For atom A of 
a diatomic molecule 

qA = 2 ^ e l | P 2 ( c O S ^ ) A i l 8 | * e l > + 2eZs(*rtb | R~Z | *vib> 

= ( ^ e l ) ^ + ( ^ n u c ) ^ . (4 ) 

The quadrupole coupling constants for LiH and LiD 
were first measured in 1961 by Klemperer, Wharton, 
and Gold.14 For LiH much interest is attached to 
obtaining QLI7 via q-^i obtained through an electronic 
wave function since Qn7 has not been otherwise meas
ured. Since QT> is fairly well established #D obtained from 
an electronic wave function can be used to obtain an 
eqQ/h to compare with the experimental value, thus 
providing a useful comparison of the wave function to 
experiment. 

In order to compute qD from Eq. (4) we obtained a 
numerical ^Vib by numerically integrating the one-
dimensional radial Schrodinger's equation using as a 
potential function a Hurlburt-Hirschfelder15 potential 
function determined by our computed spectroscopic 
constants (for LiD). Using this ^ v i b we find (?nuc)D 
= 0.0350#o~3. On combining this with (qei)n= —0.0776 
<zo~3 obtained from the twenty-eight wave functions of 

13 See C. H. Townes, Handbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1958), Vol. 38, for a review of experi
mental and theoretical results relating to nuclear quadrupole 
effects. 

14 L. Wharton, L. P. Gold, and W. Klemperer, J. Chem. Phys. 
37, 2149 (1962). Some of the results were first reported at the 
June 1961 Ohio State Symposium on Molecular Spectroscopy. 

15 H. M. Hurlburt and J, 0, Hirschfelder, J. Chem. Phys. 9, 6 
(1941); 35, 1901 (1961), 

Table I I and the Qu value given by AufTray16 we find 
(eg0/A)D=34 kc/sec, which is in very good agreement17 

with the experimental value of (eqQ/h)r>=33±l 
kc/sec. Earlier theoretical estimates of (eqQ/h) D have 
been made by Kolker and Karplus,18 (eqQ/h)v = 35.5 
kc/sec using a relatively crude SCF-MO wave function 
and by Nesbet and Kahalas18,20 (eqQ/h)r>=36.7 kc/sec 
using a better SCF-MO wave function. 

Historically, the first attempt to determine QLI7 via a 
quadrupole coupling constant and Eq. (4) was by Harris 
and Melkanoff21 in 1953 using the eqQ/h data of Kusch22 

for Li2 and the James23 Li2 wave function. Unfor
tunately, for Li2 (#ei)Li~ — (^nuc)Li so that in this case 
several significant figures in both quantities are needed 
to obtain meaningful results for q^u Several authors23'24 

later tried to improve upon the inconclusive results 
obtained by Harris and Melkanoff for gu from Li2. 
Nesbet and Kahalas25 recognized, when eqQ/h for LiH 
became available2 in 1961, that this molecule offered a 
better circumstance for obtaining an accurate #14 since 
(<7ei)ia and (#nuc)Li are substantially different for LiH. 
In a later paper,19 Kahalas and Nesbet report qu and 
Qu values obtained from SCF-MO wave functions 
using several different basis sets. They found that the 
addition of 3dalji orbitals to the atomic orbital basis set 
for the SCF-MO calculations caused substantial changes 
in #14. 

In the remainder of the section we discuss calculations 
leading to what we believe is the most accurate value 
yet found for QLI7. I t has been suggested17-23 that the 
quadrupolar deviations from spherical symmetry of 
atomic cores in molecules can substantially influence 
(#GI)A values. This distortion can result from two 
sources the polarization of the electronic charge 
distribution by the nuclear quadrupole,26 and the 
distorting effect of the remainder of molecular charge 
distribution. Provision for the latter effect can readily be 
put in a molecular wave function by including terms 
which add quadrupolar character to the polarization 
of the atomic-like core. A careful scrutiny of Table I I 

16 J. P. AufTray, Phys. Rev. Letters 6, 120 (1961). AufTray 
obtains Qr> by evaluating (gei)D from the Kolos-Roothaan D2 
wave function. 

17 Note that we have not considered the polarization of the 
electronic charge distribution by the nuclear quadrupole. See, for 
example, R. M. Sternheimer, Phys. Rev. 84, 244 (1951); 86, 316 
(1952); or Ref. 23. Neither, however, was this effect considered by 
AufTray, Ref. 16 in his evaluation of QT>. 

18 H. J. Kolker and M. Karplus, J. Chem. Phys. 36, 960 (1962). 
19 S. L. Kahalas and R. K. Nesbet, J. Chem. Phys. 39, 529 

(1963). 
20 Kahalas and Nesbet used e D =-2 .73X10- 2 7 cm2. We have 

converted their eqQ/h to e D = - 2 . 8 2 X l 0 _ 2 7 cm2 to facilitate 
comparison. 

21 E. G. Harris and M. A. Melkanoff, Phys. Rev. 90, 585 (1953). 
22 R. H. Logan, R. E. Cote, and P. Kusch, Phys. Rev. 86, 280 

(1952). 
23 R. M. Sternheimer and H. M. Foley, Phys. Rev. 92, 1460 

(1953). 
2 4 1 . Mannari and T. Arai, J. Chem. Phys. 28, 28 (1958). 
25 S. L. Kahalas and R. K. Nesbet, Phys. Rev. Letters 6, 549 

(1961). 
26 See Ref. 17 for references on these matters. Also Ref. 13. 
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TABLE VI. Comparison of some expectation values. J?=3.046&0. 

12-term function 
of Table I I I 14-term function. 

12-term function 28-term function with Is2 replaced See text 24-term function 
of Table III of Table II by <f>"2 (0,0,0) for description of Table V 

E (a.u.) -8.0051 -8.0561 -8.0060 -8.0051 -8.0565 
/xo(D) -5 .84 -5.911 -5 .83 -5 .85 -5.92 
(qei/2e)aa<T3 -0.0754 -0.0776 -0.0752 -0.0754 -0.0777 
(?ei/2e)Lia<r3 -0.0550 -0.0555 -0.0500 -0.0534 -0.0521 

reveals, however, that while there are a number of 
terms in the twenty-eight term wave function which 
allow for core polarization, none of them can add 
appreciable quadrupolar character to the Li core. 
Therefore, we constructed wave functions which give 
"core polarization" directly rather than in multipole 
components by replacing the Is2 Li core by <£"2 (0,0,0) 
[[see Eq. (2)] and selecting optimum values for y and 
13. [Note that if y=p, 0(0,0,0) differs from l*Li only 
by normalization.] Calculations of this type were 
carried out with the 12-term function of Table III and 
with a twenty-four term function obtained by deleting 
from the twenty-eight term function most other provi
sion for "core polarization" (see Table V). In each 
case optimization of y and /3 yielded a ratio Y//?=0.976 
indicating a slight shift of charge density out of the 
internuclear region. Then in order to provide a compar
ison of this means of adding quadrupolar core polariza
tion to the direct multipole expansion we constructed a 
14-term function by adding two terms involving 3do"Li 
orbitals in the Li core to the 12-term function and 
optimized the orbital exponent of the 3Jo-Li orbital. In 
Table VI we list the energies, juo, (̂ eOia, and (<?ei)H 
from these and certain other computations. These 
results can be summarized in a few sentences. The 
twenty-eight term and twenty-four term functions yield 
virtually identical values for energy, (qei)n9 and /x0 

but different (^OLJ values. These results imply (a) 
that both functions have closely similar charge distribu
tions and almost the same allowance for the energy due 
to "core polarization"; (b) that they differ in the amount 
of quadrupolar character in the distortion of the core. 
We further note that the twenty-eight term function 
gives virtually the same (<7ei)u as the 12-term function 
which has a totally spherically symmetrical core. The 
12-term function with the elliptic core gives a larger 
change in (qe\)Li than the 14-term function with the 
3d(T terms in the Li core but in the same direction. This 
indicates that the use of elliptic core orbitals is an 
effective way of introducing the quadrupolar core 
distortion into the wave function. Furthermore, 
obtaining similar values by different means adds sub
stance to the values. We have, therefore, used the 
((Zei)Li from the twenty-four term function in computing 
(<Ztotai)ia. Computing a SEVib as previously described and 

using the numerical ^Vib in Eq. (4) we find (gnuc)Li 
= 0.0348a0-

3. This gives (qtot&i/2e) = 0.017 3a0-*. Since 
eqQ/h=m kc/sec, we find (Qu/e)= -4.3X10"26 cm2. 
This is in agreement with those results of Kahalas and 
Nesbet18 which they regard as most reliable, (qtot&i/2e) 
= -0.0166a<r8 and (QLi/e) = -4.44X10-26 cm2. It 
should be noted, however, that Kahalas and Nesbet 
set #nuc= 2ZRe~* rather than computing the expectation 
value. Including this factor in their calculations would 
make their value for Qu/e less negative, probably 
bringing it closer to the results reported here. Our 
discussion also explains the change in (q0i)u found by 
Kahalas and Nesbet upon the addition of 3dcrLi orbitals 
to their SCF-MO basis. 

There are no direct experimental determinations of 
(Q/e) for Li7. The only alternate values are those 
obtained from (l^)3 configurations of the shell model 
nucleus.27 From Q/(e(r2))= (2J-2Z+1)/2(J+1) and 
J—% one obtains Q/(e(r2))=—0.20. A more recent 
estimate28 gives Q/(e(r2))= — 0.25. If one takes (r2)1/2 

= 1.5X10~3A1^ cm there is obtained (r2)=8.24Xl0~26 

cm2, which gives Q/e = —2.06X10~26 cm2. Van der 
Merwe28 prefers for lp nucleons (r2)<10-25 so that 
IQ/^I <2.5X10-26 cm2. Thus the shell model value is 
considerably smaller than that obtained from the 
experimentally obtained coupling constant and the 
theoretical electronic q. This is not unusual for nuclei 
of odd Z.29 It has been postulated that the nucleons 
outside a closed shell deform the surface of a shell. 

A recent estimate28 of the quadrupole moment taking 
these deformations into account yields Q/2(e(r2)) 
= - 3 / 5 or \Q/e\ < -6.0X10-26 cm2. It is seen that the 
quadrupole moment obtained from the experimentally 
determined quadrupole coupling constant and the 
theoretically determined electric field gradient is 
bracketed by the values obtained from the simple 
nuclear shell model and the simple nuclear shell model 
with surface coupling and is presumably more accurate 
than either. 

27 R. G. Sachs, Nuclear Theory (Addison-Wesley Publishing 
Company, Reading Massachusetts, 1953), p. 259. 

28 J. H. van der Merwe, Phys. Rev. 131, 2181 (1963). 
29 J. Rainwater, Phys. Rev. 79, 432 (1950); A. Bohr and B. R. 

Mottelson, Kgl. Danske Videnskab, Selskab, Mat.-Fys. Medd. 
28 (1959). 
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THE RELATIONSHIP BETWEEN THE FORCE 
CONSTANT AND THE ELECTRIC 

FIELD GRADIENTS 

It has been shown30 that the Hellman-Feynman 
theorem leads to the following relationship 

AA = k/ZA-qA = (47r/3)pCA)- / dp/dXA cos<9A/r2Adr. 

Here k is the force constant, qA is the electric field 
30 L. Salem, J. Chem. Phys. 38, 1227 (1963). 

I. INTRODUCTION 

THERE has been some recent experimental interest 
in the process of single-quantum annihilation of 

positrons.1 In a one-photon process recoil momentum 
must be taken up by a nucleus, so that annihilation is 
more probable in the K shell than in outer atomic shells. 
The i£-shell annihilation cross section is known numeri
cally for lead, Z=82, from the computation of Jaeger 
and Hulme2; and analytically for arbitrary Z from the 
Born approximation.3 

The Born-approximation formula, Eq. (20), shows 
that the cross section is proportional to Z5; annihilation 
is therefore more probable for heavy elements than for 
light. For elements with Z greater than 70 the Born 
parameter aZ is greater than \ and the Born approxima
tion is certainly not reliable. 

Because of the need for accurate cross sections for 
elements other than lead it was decided to formulate 
the problem in such a way that a detailed numerical 
analysis would be simple. 

In Sec. II we explain how the single-photon cross sec
tion is reduced to a sum of partial-wave cross sections 
corresponding to an angular momentum decomposition 

* This work was supported in part by the U. S. Atomic Energy 
Commission. 

1 L . Sodickson, W. Bowman, J. Stephenson, and R. Weinstein, 
Phys. Rev. 124, 1851 (1961). 

2 J. C. Jaeger and H. R. Hulme, Proc. Cambridge Phil. Soc. 32, 
158 (1936). 

3 H. J. Bhabha and H. R. Hulme, Proc. Roy. Soc. (London) 
A146, 723 (1934). 

gradient at nucleus A, p(A) is the electron density at 
nucleus A and XA is the nuclear position coordinate. 
We find from our computed values of qA and p(A) at 
R=3.0a0 that ALi=+0.063a0-3 and AH=+0.0043a(r3. 

It can be shown30 that AA = 0 if the charge distribution 
around A is spherical and if it follows the motion of A. 
Inspection of the LiH wave function shows that these 
conditions are not met and that small value of AH is due 
to a fortuitous cancellation of p(A) and J*(dp/dXA) 
X (cosdA/r2)dr. When qA is negative as for lithium, the 
cancellation clearly cannot occur. 

of the incident positron wave function. The radial inte
grals occurring in the partial-wave cross sections are 
reduced to sums of hypergeometric functions in Sec. III. 
The results of the numerical analysis, together wTith a 
discussion of various limiting cases, are presented in 
Sec. IV. 

The numerical results are in precise agreement with 
the Born approximation as Z —-> 0, and agree approxi
mately, but not in detail, with the results of Jaeger 
and Hulme for Z= 82. 

II. REDUCTION OF THE CROSS SECTION 

The cross section for single-quantum annihilation is 
given by 

<?= / <Klk £ \M\2, (1) 
47T p J r.e.ju 

where the matrix element M is 

M = —i / dsr(v^(r)a- eu^t))*-*". (2) 

In the above we denote the energy-momentum vectors 
of the positron and photon by ($,iW) and (k,ico); and 
the photon polarization vector by e. The electron bind
ing energy is given by myi, where m is the electron mass 
and 7i=(l—a2Z2)112. We use ^(r) and «M(r) for the 
Coulomb field Dirac wave functions of a positron with 
spin f, and a K shell electron with magnetic quantum 
number ju, respectively. 
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Calculations of the cross section for single-quantum annihilation of positrons by JC-shell electrons in the 
Coulomb field of a nucleus are presented. Numerical results are given for nuclear charges Z = 73, 74, 78, 79, 
82, and 90 and for energies from threshold to 1.75 MeV. For Z = 82 the numerical results agree well but not in 
detail with previous results of Jaeger and Hulme, and show that the Born approximation is too large by a 
factor of nearly 2. 


